Fault Diagnosis Method for Rolling Bearing Based on Differential-basedEmpirical Mode Decomposition and Hidden Markov Model
MENG Zong1,2,YAN Xiao-li1
1. Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Qinhuangdao, Heibei 066004, China;
2. National Eng Research Center for Equipment & Tech of Cold Rolling Strip, Qinhuangdao, Heibei 066004, China
Abstract: Based on the differential-based empirical mode decomposition(DEMD)and hidden Markov model(HMM), a new method for rotating machinery fault diagnosis is proposed. The method is applied to rolling bearing fault diagnosis. First of all, fault signals are decomposed by DEMD, the instantaneous energy distribution of each signal is extracted to form the fault feature vectors, and then input the feature vectors into the HMM classifier for malfunction recognition, the maximum likelihood probability which is output by HMM classifier is in the fault state. Finally, different fault types are recognized. A practical fault signal of a rolling bearing with corrosive pitting is applied to test the method.Experimental result showed that the method of DEMD-HMM is superior to the method of EMD-HMM and can identify the rolling bearing fault accurately and effectively.
[1]钟秉林,黄仁. 机械故障诊断学[M]. 北京: 机械工业出版社, 2007.
[2]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceeding of Royal Society London, 1998, 454(1971): 903-995.
[3]杨宇,于德介,程军圣. 基于EMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2005, 24(1) : 85-88.
[4]孟宗,顾海燕,刘利晖,等.基于EMD与AR谱的轧机主传动系统故障诊断研究[J]. 计量学报, 2011, 32(4): 338-342.
[5]高强,杜小山,范虹,等.滚动轴承故障的EMD诊断方法研究[J]. 振动工程学报, 2007, 20(1): 15-18.
[6]Feldman M. Analytical basics of the EMD: Two harmonics decomposition[J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2059-2071.
[7]Rilling G,Flandrin P. One or Two Frequency? The Empirical Mode Decomposition Answers[J]. IEEE Transaction on Signal Processing, 2008, 56(1): 85-95.
[8]景蓓蓓,李鸿光. 基于微分的经验模式方法在转子裂纹和碰摩故障诊断中的应用[J]. 噪声与振动控制, 2009, 5(1):66-69.
[9]陶新民,徐晶,杜宝祥.基于小波域隐马尔可夫模型故障诊断方法[J].振动与冲击, 2009, 28(4): 33-37.
[10]曹冲锋,杨世锡,杨将新.一种基于瞬时能量分布特征的汽轮发电机组转子故障诊断新方法[J].振动与冲击, 2009, 28(3): 35-39.