1. School of Environment Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;
2. Division of Thermophysics and Process Measurements, National Institute of Metrology, Beijing 100029, China;
3. Construction Quality Supervision Station of Navy, Beijing 100161, China
Abstract:An experimental system based on the differential time-of-flight method was built for the measurement of the speed of sound in liquids at high pressure. The double ultrasonic cavities were designed and assembled, the acoustic precision measurement system, liquid filling system with high pressure, pressure and temperature measurement system, and the data acquisition system were established. The speed of sound in pure water was measured at temperature from 303K to 353K and at pressure up to 10 MPa with a standard relative uncertainty of 0.018% (k=1). The measured speed of sound data shows good agreement with the equation of state and published experimental data. This system can be used in the measurement of speed of sound in other liquid such as sea water and new fuels in the next future.
伍肆,冯晓娟,林鸿,张金涛,王松林. 差分飞行时间法精密测量高压液体声速的研究[J]. 计量学报, 2015, 36(4): 337-343.
WU Si,FENG Xiao-juan,LIN Hong,ZHANG Jin-tao,WANG Song-lin. Experimental System for the Measurement of the Speed of Sound in Liquids at High Pressure Using the Differential Time-of-flight Method. Acta Metrologica Sinica, 2015, 36(4): 337-343.
[1]Ruffine L, Trusler J P M. Sound-speed sensor for gas pipeline applications[J]. International Journal of Thermophysics, 2009, 30(4): 1106-1117.
[2]刘强,冯晓娟,段远源. 圆柱定程干涉法确定工质的第二维里系数 [J]. 化工学报,2013,64(8): 2711-2717.
[3]尹钊玮,冯晓娟,林鸿,等.非连续边界层对圆柱声学共鸣频率的影响研究[J].计量学报,2014,35(1):1-4.
[4]Lin H, Feng X J, Gillis K A,et al. Improved determination of the Boltzmann constant using a single, fixed-length cylindrical cavity [J]. Metrologia, 2013, 50(4): 417-432.
[5]谷学敏, 林鸿, 冯晓娟, 等. 定程圆柱基准声学温度计初步研究[J]. 仪器仪表学报, 2013, 34(3): 502-508.
[6]刘强,冯晓娟,段远源. 气相声速测量偏差对导出热力学性质的影响[J]. 化工学报,2014,65(4): 1162-1168.
[7]冯晓娟,林鸿,刘强,等. 圆柱定程干涉法声速测量原理与实验系统研制[J].工程热物理学报,2011,32(5):725-728.
[8]冯晓娟,刘强,周孟夏,等. 圆柱定程干涉法声速测量系统的实验测试[J].工程热物理学报,2012,33(1):7-10.
[9]尹钊玮, 冯晓娟, 林鸿, 等. 高压气体声速精密测量系统的研制与测试[J]. 仪器仪表学报, 2013, 34(4): 774-779.
[10]Liu Q, Feng X J, Zhang K, et al. Vapor pressure and gaseous speed of sound measurements for isobutane (R600a) [J]. Fluid Phase Equilibria, 2014, 382:260-269.
[11]Liu Q, Feng X, An B, et al. Speed of sound measurements using a cylindrical resonator for gaseous carbon dioxide and propene[J]. Journal of Chemical & Engineering Data, 2014, 59(9): 2788-2798.
[12]马水龙, 余钦范. 共振声谱法测量液体声速实验[J]. 石油仪器, 2004, 18(1): 32-33.
[13]童建平, 隋成华, 魏高尧,等. 时差法声速测量仪的研制[J]. 传感器技术, 2004,23(1):28-29.
[14]Ye S, Alliez J, Lagourette B, et al. Réalisation dun dispositif de mesure de la vitesse et de latténuationdondesultrasonoresdans des liquides sous pression[J]. Revue de Physique Appliquée., 1990, 25(6): 555-565.
[15]Ye S, Lagourette B, Alliez J, et al. Speed of sound in binary mixtures as a function of temperature and pressure[J]. Fluid phase equilibria, 1992, 74: 177-202.
[16]Ye S, Lagourette B, Alliez J, et al. Comparison with experimental data of ultrasound velocity in pure hydrocarbons calculated from equations of state[J]. Fluid phase equilibria,1992, 74: 157-175.
[17]Wang Z, Nur A. Ultrasonic velocities in pure hydrocarbons and mixtures[J]. The Journal of the Acoustical Society of America, 1991, 89(6): 2725-2730.
[18]Muringer M J P, Trappeniers N J, Biswas S N. The effect of pressure on the sound velocity and density of toluene and n-heptane up to 2600 bar[J]. Physics and Chemistry of Liquids an International Journal, 1985, 14(4): 273-296.
[19]吴贵玉, 陆玲珍, 钟德元,等. PEO型精密超声声速仪[J]. 应用声学, 1983,2(4):45-47.
[20]孙长柏, 吴玉玉. 液体声速的精密数字测量[J]. 仪表技术与传感器, 1996, (2): 22-24.
[21]陈琴仙. 声速测量探头的研制[J]. 声学与电子工程, 1999, (4): 29-32.
[22]陈健. 基于信号相位差的海水声速测量方法研究[D]. 北京:国防科学技术大学, 2011.
[23]Meier K, Kabelac S. Speed of sound instrument for fluids with pressures up to 100MPa[J]. Review of scientific instruments, 2006, 77(12): 123903-8.
[24]Benedetto G, Gavioso R M, Albo P A G, et al. Speed of sound in pure water at temperatures between 274 and 394K and at pressures up to 90 MPa[J]. International journal of thermophysics, 2005, 26(6): 1667-1680.
[25]Lin C W, Trusler J P M. The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa[J]. The Journal of chemical physics, 2012, 136(9): 094511.
[26]Gedanitz H, Dávila M J, Baumhgger E, et al. An apparatus for the determination of speeds of sound in fluids[J]. The Journal of Chemical Thermodynamics, 2010, 42(4): 478-483.
[27]Wilson W D. Speed of sound in distilled water as a function of temperature and pressure[J]. The Journal of the Acoustical Society of America, 1959, 31(8): 1067-1072.
[28]Ledbetter H M, Frederick N V, Austin M W. Elastic-constant variability in stainless-steel 304[J].Journal of Applied Physics, 1980, 51(1): 305-309.
[29]Wagner W, Pru A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535.